MSE with time dependent transcription rate#
Library imports#
import sys
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
import matplotlib.pyplot as plt
import mplscience
import seaborn as sns
import scanpy as sc
import scvelo as scv
import scvi
from velovi import preprocess_data, VELOVI
sys.path.append("../../")
from paths import DATA_DIR, FIG_DIR
Global seed set to 0
General settings#
scvi.settings.dl_pin_memory_gpu_training = False
sns.reset_defaults()
sns.reset_orig()
scv.settings.set_figure_params('scvelo', dpi_save=400, dpi=80, transparent=True, fontsize=20, color_map='viridis')
SAVE_FIGURES = True
Function definitions#
def fit_velovi(bdata, time_dep_transcription_rate=False):
VELOVI.setup_anndata(bdata, spliced_layer="Ms", unspliced_layer="Mu")
vae = VELOVI(bdata, time_dep_transcription_rate=time_dep_transcription_rate)
vae.train()
df = vae.history["elbo_train"].iloc[20:].reset_index().rename(columns={'elbo_train': 'elbo'})
df['set'] = 'train'
_df = vae.history["elbo_validation"].iloc[20:].reset_index().rename(columns={'elbo_validation': 'elbo'})
_df['set'] = 'validation'
df = pd.concat([df, _df], axis=0).reset_index(drop=True)
with mplscience.style_context():
sns.set_style(style="whitegrid")
fig, ax = plt.subplots(figsize=(6, 4))
sns.lineplot(data=df, x='epoch', y='elbo', hue='set', palette=['#0173B2', '#DE8F05'], ax=ax)
latent_time = vae.get_latent_time(n_samples=25)
velocities = vae.get_velocity(n_samples=25, velo_statistic="mean")
t = latent_time
scaling = 20 / t.max(0)
bdata.layers["velocities_velovi"] = velocities / scaling
bdata.layers["latent_time_velovi"] = latent_time
bdata.var["fit_alpha"] = vae.get_rates()["alpha"] / scaling
if vae.module.time_dep_transcription_rate:
bdata.var["fit_alpha_1"] = vae.get_rates()["alpha_1"] / scaling
bdata.var["fit_lambda_alpha"] = vae.get_rates()["lambda_alpha"] / scaling
bdata.var["fit_beta"] = vae.get_rates()["beta"] / scaling
bdata.var["fit_gamma"] = vae.get_rates()["gamma"] / scaling
bdata.var["fit_t_"] = (
torch.nn.functional.softplus(vae.module.switch_time_unconstr)
.detach()
.cpu()
.numpy()
) * scaling
bdata.layers["fit_t"] = latent_time.values * scaling[np.newaxis, :]
bdata.var['fit_scaling'] = 1.0
return vae
def get_fit_velovi(bdata, model):
return model.get_expression_fit(n_samples=20)
def get_alpha(t, t_switch, alpha, alpha_1, lambda_alpha):
if isinstance(t_switch, pd.Series):
t_switch = t_switch.values
if isinstance(alpha, pd.Series):
alpha = alpha.values
if isinstance(alpha_1, pd.Series):
alpha_1 = alpha_1.values
if isinstance(lambda_alpha, pd.Series):
lambda_alpha = lambda_alpha.values
alpha = alpha_1 - (alpha_1 - alpha) * np.exp(-lambda_alpha * t)
alpha[t >= t_switch] = 0
return alpha
def get_state(t, alpha_0, alpha_1, lambda_alpha, beta, gamma, initial_state, t0=0):
u0 = initial_state[0]
s0 = initial_state[1]
u = (
u0 * np.exp(-beta * t)
+ alpha_1 / beta * (1 - np.exp(-beta * t))
- (alpha_1 - alpha_0) / (beta - lambda_alpha) * np.exp(-lambda_alpha * t0) * (np.exp(-lambda_alpha * t) - np.exp(-beta * t))
)
s = (
s0 * np.exp(-gamma * t)
+ alpha_1 / gamma * (1 - np.exp(-gamma * t))
+ (alpha_1 - beta * u0) / (gamma - beta) * (np.exp(-gamma * t) - np.exp(-beta * t))
- beta * (alpha_1 - alpha_0) / (beta - lambda_alpha) / (gamma - lambda_alpha) * np.exp(-lambda_alpha * t0) * (np.exp(-lambda_alpha * t) - np.exp(-gamma * t))
+ beta * (alpha_1 - alpha_0) / (beta - lambda_alpha) / (gamma - beta) * np.exp(-lambda_alpha * t0) * (np.exp(-beta * t) - np.exp(-gamma * t))
)
return u, s
def get_vars(adata, key="fit"):
alpha_0 = (
adata.var[f"{key}_alpha"].values if f"{key}_alpha" in adata.var.keys() else 1
)
alpha_1 = (
adata.var[f"{key}_alpha_1"].values if f"{key}_alpha_1" in adata.var.keys() else 0
)
lambda_alpha = (
adata.var[f"{key}_lambda_alpha"].values if f"{key}_lambda_alpha" in adata.var.keys() else 0
)
beta = adata.var[f"{key}_beta"].values if f"{key}_beta" in adata.var.keys() else 1
gamma = adata.var[f"{key}_gamma"].values
t_switch = adata.var[f"{key}_t_"].values
return alpha_0, alpha_1, lambda_alpha, beta, gamma, t_switch
def compute_dynamics(adata, basis, key="true", sort=True):
idx = adata.var_names.get_loc(basis) if isinstance(basis, str) else basis
key = "fit" if f"{key}_gamma" not in adata.var_keys() else key
alpha_0, alpha_1, lambda_alpha, beta, gamma, t_switch = get_vars(adata[:, basis], key=key)
t = np.linspace(0, 20, 1000) # adata.layers[f"{key}_t"][:, idx]
if sort:
t = np.sort(t)
unspliced_induction, spliced_induction = get_state(
t=t[t < t_switch],
alpha_0=alpha_0,
alpha_1=alpha_1,
lambda_alpha=lambda_alpha,
beta=beta,
gamma=gamma,
initial_state=[0, 0],
)
u0_switch, s0_switch = get_state(
t=t_switch,
alpha_0=alpha_0,
alpha_1=alpha_1,
lambda_alpha=lambda_alpha,
beta=beta,
gamma=gamma,
initial_state=[0, 0],
)
unspliced_repression, spliced_repression = get_state(
t=t[t >= t_switch] - t_switch,
alpha_0=0,
alpha_1=0,
lambda_alpha=0,
beta=beta,
gamma=gamma,
initial_state=[u0_switch, s0_switch],
)
unspliced = np.zeros(len(t))
unspliced[t < t_switch] = unspliced_induction
unspliced[t >= t_switch] = unspliced_repression
spliced = np.zeros(len(t))
spliced[t < t_switch] = spliced_induction
spliced[t >= t_switch] = spliced_repression
return unspliced, spliced
def get_rate_df(df_unspliced, df_spliced, gene):
return pd.DataFrame(
{
f'unspliced': df_unspliced.loc[:, gene].values.squeeze(),
f'spliced': df_spliced.loc[:, gene].values. squeeze(),
}
)
def plot_phase_portrait(adata, gene, df_const_rate, df_time_dep_rate, color, figsize=(6, 6)):
fig, ax = plt.subplots(figsize=figsize)
df = pd.DataFrame(
{
'unspliced': adata[:, gene].layers['Mu'].squeeze().copy(),
'spliced': adata[:, gene].layers['Ms'].squeeze().copy(),
'color': color
}
)
sns.scatterplot(data=df, x='spliced', y='unspliced', c=color, s=25, ax=ax);
unspliced = df_const_rate[f'unspliced']
spliced = df_const_rate[f'spliced']
ax.plot(spliced, unspliced, color="purple", linewidth=3)
unspliced = df_time_dep_rate[f'unspliced']
spliced = df_time_dep_rate[f'spliced']
ax.plot(spliced, unspliced, color="purple", linestyle="--", linewidth=3)
ax.axis('off')
ax.set_title(gene)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / 'comparison' / f'{gene}_const_vs_time_dep.svg',
format="svg",
transparent=True,
bbox_inches='tight'
)
Data loading#
adata = scv.datasets.pancreas(DATA_DIR / "pancreas" / "endocrinogenesis_day15.h5ad")
adata
AnnData object with n_obs × n_vars = 3696 × 27998
obs: 'clusters_coarse', 'clusters', 'S_score', 'G2M_score'
var: 'highly_variable_genes'
uns: 'clusters_coarse_colors', 'clusters_colors', 'day_colors', 'neighbors', 'pca'
obsm: 'X_pca', 'X_umap'
layers: 'spliced', 'unspliced'
obsp: 'distances', 'connectivities'
scv.pl.scatter(adata, basis='umap', c='clusters', dpi=200)
Data preprocessing#
scv.pp.filter_and_normalize(adata, min_shared_counts=20, n_top_genes=2000)
scv.pp.moments(adata, n_pcs=30, n_neighbors=30)
adata = preprocess_data(adata)
bdata = adata.copy()
Filtered out 20801 genes that are detected 20 counts (shared).
Normalized count data: X, spliced, unspliced.
Extracted 2000 highly variable genes.
Logarithmized X.
computing neighbors
finished (0:00:05) --> added
'distances' and 'connectivities', weighted adjacency matrices (adata.obsp)
computing moments based on connectivities
finished (0:00:00) --> added
'Ms' and 'Mu', moments of un/spliced abundances (adata.layers)
computing velocities
finished (0:00:00) --> added
'velocity', velocity vectors for each individual cell (adata.layers)
Model training#
Constant transcription rate#
velovi_vae_const = fit_velovi(adata, time_dep_transcription_rate=False)
/home/icb/philipp.weiler/miniconda3/envs/velovi-py39/lib/python3.9/site-packages/torch/distributed/_sharded_tensor/__init__.py:8: DeprecationWarning: torch.distributed._sharded_tensor will be deprecated, use torch.distributed._shard.sharded_tensor instead
warnings.warn(
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Set SLURM handle signals.
Epoch 500/500: 100%|██████████| 500/500 [01:53<00:00, 4.42it/s, loss=-2.65e+03, v_num=1]
unspliced = []
spliced = []
for gene in tqdm(adata.var_names):
_u, _s = compute_dynamics(adata, basis=gene, sort=True)
unspliced.append(_u.tolist())
spliced.append(_s.tolist())
df_unspliced_constant = pd.DataFrame(np.array(unspliced).T, columns=adata.var_names)
df_spliced_constant = pd.DataFrame(np.array(spliced).T, columns=adata.var_names)
100%|██████████| 1074/1074 [00:02<00:00, 437.97it/s]
Time dependent transcription rate#
velovi_vae_time_dep = fit_velovi(bdata, time_dep_transcription_rate=True)
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Set SLURM handle signals.
Epoch 500/500: 100%|██████████| 500/500 [02:23<00:00, 3.48it/s, loss=-2.89e+03, v_num=1]
unspliced = []
spliced = []
for gene in tqdm(adata.var_names):
_u, _s = compute_dynamics(bdata, basis=gene, sort=True)
unspliced.append(_u.tolist())
spliced.append(_s.tolist())
df_unspliced_time_dep = pd.DataFrame(np.array(unspliced).T, columns=adata.var_names)
df_spliced_time_dep = pd.DataFrame(np.array(spliced).T, columns=adata.var_names)
100%|██████████| 1074/1074 [00:02<00:00, 436.08it/s]
Phase portraits#
color = adata.obs['clusters'].replace(
dict(
zip(
adata.obs['clusters'].cat.categories,
adata.uns['clusters_colors']
)
)
).tolist()
for gene in ["Cdkn1a", "Atad2", "Smarca1", "Gspt1", "Ppp1r1a"]:
df_const_rate = get_rate_df(
df_unspliced=df_unspliced_constant,
df_spliced=df_spliced_constant,
gene=gene
)
df_time_dep_rate = get_rate_df(
df_unspliced=df_unspliced_time_dep,
df_spliced=df_spliced_time_dep,
gene=gene
)
plot_phase_portrait(
adata, gene=gene, df_const_rate=df_const_rate, df_time_dep_rate=df_time_dep_rate, color=color
)
Transcription rate#
alpha = get_alpha(
t=bdata.layers['fit_t'],
t_switch=bdata.var['fit_t_'],
alpha=bdata.var['fit_alpha'],
alpha_1=bdata.var['fit_alpha_1'],
lambda_alpha=bdata.var['fit_lambda_alpha']
)
alpha = pd.DataFrame(alpha, index=bdata.obs_names, columns=bdata.var_names)
df = bdata.var[['fit_alpha', 'fit_alpha_1', 'fit_lambda_alpha']]
df['fit_delta_alpha'] = df['fit_alpha'] - df['fit_alpha_1']
with mplscience.style_context():
fig, ax = plt.subplots(figsize=(6, 4))
sns.distplot(a=df['fit_alpha'], kde=True, ax=ax)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / 'comparison' / 'alpha_0_distribution.svg',
format="svg",
transparent=True,
bbox_inches='tight'
)
with mplscience.style_context():
fig, ax = plt.subplots(figsize=(6, 4))
sns.distplot(a=df['fit_alpha_1'], kde=True, ax=ax)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / 'comparison' / 'alpha_1_distribution.svg',
format="svg",
transparent=True,
bbox_inches='tight'
)
with mplscience.style_context():
fig, ax = plt.subplots(figsize=(6, 4))
sns.distplot(a=df['fit_delta_alpha'], kde=True, ax=ax)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / 'comparison' / 'delta_alpha_distribution.svg',
format="svg",
transparent=True,
bbox_inches='tight'
)
with mplscience.style_context():
fig, ax = plt.subplots(figsize=(6, 4))
sns.distplot(a=df['fit_lambda_alpha'], kde=True, ax=ax)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / 'comparison' / 'lambda_alpha_distribution.svg',
format="svg",
transparent=True,
bbox_inches='tight'
)
for gene in ["Cdkn1a", "Atad2", "Smarca1", "Gspt1", "Ppp1r1a"]:
with mplscience.style_context():
sns.set_style(style="whitegrid")
fig, ax = plt.subplots(figsize=(6, 4))
sns.scatterplot(
x=bdata[:, gene].layers['fit_t'].squeeze(),
y=alpha[gene].values,
edgecolor='none',
legend=False,
ax=ax,
s=5,
);
ax.set_title(gene)
if SAVE_FIGURES:
ax.set_title('')
fig.savefig(
FIG_DIR / 'comparison' / f'{gene}_time_dep_alpha.svg',
format="svg",
transparent=True,
bbox_inches='tight'
)