RNA velocity in spermatogenesis#
RNA velocity analysis with the EM and steady-state models using data preprocessed with starsolo_subtr
.
Requires
adata_generation.ipynb
velocyto_var_names.csv
fromvelocyto_vi.ipynb
Output
DATA_DIR/spermatogenesis/velocities/starsolo_subtr_steady_state.pickle
DATA_DIR/spermatogenesis/velocities/starsolo_subtr_em.pickle
Library imports#
import sys
import pandas as pd
import scanpy as sc
import scvelo as scv
sys.path.insert(0, "../../../")
from paths import DATA_DIR
sc.logging.print_version_and_date()
Running Scanpy 1.9.1, on 2022-07-21 16:46.
General settings#
# set verbosity levels
sc.settings.verbosity = 2
scv.settings.verbosity = 3
scv.settings.set_figure_params('scvelo', dpi_save=400, dpi=80, transparent=True, fontsize=20, color_map='viridis')
scv.settings.plot_prefix = ""
Constants#
N_JOBS = 8
VELOCYTO_VAR_NAMES = pd.read_csv('velocyto_var_names.csv', index_col=0, header=None).index.tolist()
Data loading#
Load the AnnData object from the CellRank software package (or from whereever you would like to load your data from)
adata = sc.read(DATA_DIR / 'spermatogenesis' / "starsolo_subtr.h5ad")
adata
AnnData object with n_obs × n_vars = 1829 × 54144
obs: 'cell_index', 'clusters_coarse', 'clusters'
layers: 'spliced', 'unspliced'
scv.pl.proportions(adata)
Data pre-processing#
scv.pp.filter_and_normalize(adata, min_shared_counts=20, n_top_genes=2000, retain_genes=VELOCYTO_VAR_NAMES)
scv.pp.moments(adata, n_pcs=30, n_neighbors=30)
Filtered out 45218 genes that are detected 20 counts (shared).
Normalized count data: X, spliced, unspliced.
Extracted 2188 highly variable genes.
Logarithmized X.
computing PCA
on highly variable genes
with n_comps=30
finished (0:00:04)
computing neighbors
finished (0:00:20) --> added
'distances' and 'connectivities', weighted adjacency matrices (adata.obsp)
computing moments based on connectivities
finished (0:00:01) --> added
'Ms' and 'Mu', moments of un/spliced abundances (adata.layers)
Model fitting#
Steady state#
scv.tl.velocity(adata, mode="steady_state")
adata = adata[:, VELOCYTO_VAR_NAMES].copy()
computing velocities
finished (0:00:00) --> added
'velocity', velocity vectors for each individual cell (adata.layers)
pd.DataFrame(
adata.layers['velocity'],
index=adata.obs_names,
columns=adata.var_names
).to_pickle(
DATA_DIR / 'spermatogenesis' / 'velocities' / 'starsolo_subtr_steady_state.pickle'
)
EM#
scv.tl.recover_dynamics(adata, var_names='all', n_jobs=N_JOBS)
scv.tl.velocity(adata, mode='dynamical')
recovering dynamics (using 8/64 cores)
finished (0:03:23) --> added
'fit_pars', fitted parameters for splicing dynamics (adata.var)
computing velocities
finished (0:00:04) --> added
'velocity', velocity vectors for each individual cell (adata.layers)
pd.DataFrame(
adata[:, ~adata.var['fit_alpha'].isnull()].layers['velocity'],
index=adata.obs_names,
columns=adata.var_names[~adata.var['fit_alpha'].isnull()]
).to_pickle(
DATA_DIR / 'spermatogenesis' / 'velocities' / 'starsolo_subtr_em.pickle'
)